| Example Optimization A | Iternatives - Fridley | NIRC |)P | |--|---|--|------------------------| | Problem or Program Element | <u>Solution</u> | 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | ual Cost
s (x 1,000 | | Excessive System Fouling | Install Additional Wells and Reduce
Pumping Rates | \$ | 75 | | Inefficient Pumping of Discharge Water | Gravity Discharge Through Automated Bypass Line | \$ | 16 | | High Pumping Electrical Costs | Install Variable-Speed Drives | \$ | 8 | | Maintenance Labor | Perform SCADA Supported Predictive Maintenance | \$ | 3 | | Environmental Monitoring | Streamline Environmental Monitoring | \$ | 27 | | Well Field Monitoring | Upgrade Well Field Sensors and
Automate Monitoring | \$ | 15 | | Treatment System Monitoring and Data | Upgrade of SCADA System | \$ | 16 | | Acquisition and Reporting | Total Savings | s | 160 | | An Employee-Owned Company | | |---------------------------|--| | Project | Overview – O Field Landfill | | SAIC Smartsite | Optimization and engineering of leachate collection and monitoring system of a major landfill at Region III CERCLA Superfund Site Chemical warfare agents landfill at Aberdeen Proving Ground, MD Pump and treat of solvents and metals plume from landfill 14 extraction wells, metals/solids removal, packed tower aeration, UV oxidation, GAC polishing, bio-monitoring, discharge to Chesapeake Bay Extensive Groundwater/Air Monitoring Program Security issues Independent LTO/LTM Contractor \$1.7M/yr annual budget | | Example Optimization Alternatives – O Field Landfill | | | | | | |--|--|----|-------------------------|--|--| | Problem or Program Element | <u>Solution</u> | | ual Cost
s (x 1,000) | | | | Well Field Management | Install Additional Wells, Optimize Well
Field Pumping Rates | \$ | 36 | | | | Groundwater Extraction System Pump
Performance and Extraction System
Fouling | Replace Pumps and Water Level Controls | \$ | 31 | | | | Lime Feed system | Replace Bag Lime with Bulk Sodium
Hydroxide Feed | \$ | 28 | | | | Upflow Sand Filter | Replace Sand Filter | \$ | 28 | | | | Air Stripping Tower | Discontinue Use But Do Not Remove the AST | \$ | 55 | | | | Sludge Management | Replace Drums with Bulk Sludge Storage and Handling | \$ | 36 | | | | Effluent Monitoring Water Conditioning System | Upgrade System Construction, Replace
Chiller Unit | \$ | 31 | | | | tampie Optimization | n Alternatives – O Field La | andf | III (cor | |--|--|------------|------------------------| | Problem or Program Element | <u>Solution</u> | THE PERSON | ual Cost
s (x 1,000 | | Well Field Control and Monitoring | Install and Execute SCADA Supported O&M | \$ | 31 | | GWTF Control and Monitoring | Install and Execute SCADA Supported O&M | \$ | 54 | | Well Field Environmental Monitoring
Program | Reduce Number and Frequency of Sampling | \$ | 47 | | GWTF Environmental Monitoring Program | Develop Reliable Off-Gas Monitoring
Program Using Field Methods | \$ | 17 | | Data Management and Reporting | Develop SCADA Supported and
Standardized/Automated Data Analyses and
Report Generation | \$ | 69 | | Other | Reduce GAC Loading, Upgrade Emergency
Generator, Execute SCADA-Supported O&M | \$ | 11 | | | Total Saving | s \$ | 458 ² | | | 40 40 1 0 51 111 | | |-----------------------------------|--|---| | Alternatives and Result | ant Cost Savings – O Field Land | CONTRACTOR OF THE PARTY | | Alternative | Resultant Cost Saving | Annual Cost
Savings (x 1,000) | | Optimize Well Field Management | Reduce Well Field and Pump O&M | \$ 3.6 | | · Install Additional Wells | Reduce Weekend Operations | \$ 1.7 | | Optimize Well field Pumping Rates | Reduce Sludge Management/Disposal | \$ 1.9 | | | Provide Treatment Capacity for IDW - Eliminate Off-Site Disposal | \$ 28.4 | | | Total Savings | \$ 35.6 | | Upgrade Lime Feed System | Reduce Normal O&M Costs | \$ 20.2 | | Replace Bag Lime With Liquid | Reduce Compensatory Overtime Due to Downtime | \$ 10.2 | | Sodium Hydroxide Feed | Reduce Pump Replacement | \$ 1.4 | | | Reduce Sludge Management/Disposal | \$ 1.2 | | | Reduce Utility Costs | \$ 2.6 | | | Increase Chemical Costs | \$ -7.5 | | • | nips Between Program Optimization | | | |-------------------------|--|------------------------|-------------------------| | Alternatives and Re | esultant Cost Savings (cont'd) | | 10 1 | | <u>Alternative</u> | Resultant Cost Saving | SAT IN LOCAL PROPERTY. | ual Cost
s (x 1,000) | | Upgrade Effluent Water | Reduce Normal O&M Costs | | 3.9 | | Monitoring System | Reduce Unscheduled Alarm Response | \$ | 6.2 | | | Reduce Compensatory Overtime Due to System
Downtown | \$ | 3.2 | | | Reduce Unscheduled Sampling/Analyses | \$ | 12.1 | | | Reduce Event Administrative/Regulatory Reporting | \$ | 6.0 | | | Total Savings | \$ | 31.4 | | Upgrade of SCADA System | Reduce Data Collection Costs | 11 | ? | | | Reduce Data Input/Transfer | | ? | | | Reduce Data QA/QC | | ? | | | Reduce Data Analyses and Reporting Costs | | ? | | | Reduce System and Manifold Maintenance Costs | | ? | | | Reduce Administrative Management and Travel Costs | | ? | | Vineland Ch | nemical Cost/ <i>I</i> | Alternatives S | Sumn | nary | | | |-------------|--|--|-----------------|---------------------------|--|--| | | Program Element | Alternative Evaluated | Initial
Cost | Annual
Cost
Savings | Life-
Cycle
Savings ¹ | Return
on
Investr
ent
(years | | | Well Field Management for Flow
Maximization | Redevelop 14 RW's, reconstruct
RW-9, and hydrogeologic testing
of two RW's | \$173,000 | N/A | \$1,765,950 | N/A | | | Fouling of Groundwater Extraction
Pumps | Addition of automated sequestering agent system. | \$36,000 | (\$43,538) | (\$635,293) | (0.8) | | | Performance of Groundwater
Influent Lines | New transfer main | \$288,360 | \$19,360 | \$69,000 | 15 | | | Well Vault Monitoring and Maintenance | Replace covers, seal vaults, and grade area. | \$32,200 | \$22,822 | \$281,920 | 1.4 | | | Hydraulic Capacity of the Treatment
Plant | Add level control for coagulation tanks | \$7,040 | \$550 | \$500 | 12.9 | | | Performance Enhancement
Through Flow Equalization | Addition of equalization tank system | \$156,500 | \$51,300 | \$549,635 | 3.0 | | | Chemical Usage Rates | Optimization of current protocols, eliminate second organic train, chemical elimination, and addition of polishing unit. | \$296,093 | \$337,068 | \$4,343,585 | 0.9 | | | Performance of DAF Units | Modify discharge pipe weir and add internal sludge collection pipes. | \$25,660 | \$24,500 | \$311,647 | 1 | | | Performance of Chemical and
Polymer Feed Pumps | Replace existing pumps and add two new chemical dilution stations. | \$25,000 | \$4,300 | \$34,200 | 5.8 | | | Performance of Flow Meters | Replace well flow meters with | \$27.300 | \$10.920 | \$123.012 | 2.5 | | Hallu Gliellille | l Cost/Alterna | tives : | Summa | ry (Co | nt) | |--|--|--------------|------------------------|------------------------------------|-------------| | Program Element | Alternative Evaluated | Initial Cost | Annual Cost
Savings | Life-Cycle
Savings ¹ | ROI (years) | | Compressed Air System | Add third compressor. | \$15,600 | \$1,875 | \$10,195 | 8.3 | | Sludge Dewatering and
Management | Replace centrifuges with filter presses | \$280,500 | \$96,300 | \$1,045,400 | 2.9 | | Installation of MOVs in Chemical
Storage Facility | Install motor operators on valves | \$64,175 | \$315 | \$0 | >30 | | SCADA System – Well Field
Control and Operations
Monitoring | Implement SCADA well field control and monitoring | \$45,660 | \$6,370 | \$42,022 | 7.2 | | SCADA System – Treatment
Plant Control and Operations
Monitoring | Implement integrated plant control and monitoring | \$104,200 | \$28,600 | \$289,474 | 3.6 | | SCADA System – Operator
SCADA Control of Chemical Fee
Rates | Integrate chemical feed rate control into PLC | \$50,000 | \$25,662 | \$303,233 | 2.0 | | PLC and VFD Maintenance and
Obsolescence | Perform VFD survey and substitution design | \$6,200 | \$0 | \$0 | N/A | | Environmental Monitoring – Well
Field Monitoring | Optimize sampling frequency and install dedicated sampling pumps | \$124,500 | \$63,440 | \$748,741 | 2.0 | | Environmental Monitoring –
Treatment Plant Monitoring | Reduce frequency of two off-
site sampling parameters. | \$19,500 | \$11,720 | \$141,824 | 1.7 | | Data Management and Reporting | No opportunities for improvement identified | N/A | N/A | N/A | N/A | | TOTAL | \$1,296,873 | \$657,778 | \$9,696,354 | 1.05 | | | Optimi | zation Support of | Site CI | osure | | | |--------|---|-----------------------------------|---|---|---| | | | Site Name | Program Overview | Strategies Employed | Results | | | Evaluate current | | | | | | | environmental and | Goss Cove Sub
Base, New London | Allegations of impacted impacts | TIE Evaluation of toxicity | NFA | | | regulatory conditions. | Olivetti Supplies | VOC contaminated soil
and groundwater | Sequential closure; RBCA | Site Closure,
divesture, and
commercial reuse | | | Update risk
assessment
assumptions. | Bethlehem Works
Site | 160 acres of soil and groundwater impacts, various substances | Source removal; RBCA
cleanup standards;
Alternative exposure
scenarios | Site closed,
divested,
redevelopment as
commercial and
historical park
complex | | | Fate and transport | Bethlehem Steel
Plant Site | 80 acres filled with arsenic bearing wastes | Site specific RBCA treatment standards | Site closed,
divested, and
redeveloped as
office park | | | and risk modeling
(TIE, RBCA, etc.) | CBS Manufacturing
Facility | VOCs and metals in lagoon, soil, and groundwater | Treatability studies,
phytoremediation, fate and
transport modeling for
RBCA treatment | Site closed,
divested, and
reused as
manufacturing site | | | Update and optimize
site closure | Witco Bakerstown
Drum Site | 3600 drums of hazardous waste and contaminated soils | Waste segregation and
stabilization, closure under
State Act II program | Site closed |